
Candy

EGOI 2023

Problem author: Yann Viegas.

1 The Problem

You are given an array a1, a2, . . . , aN and two integers F and T . In a single
operation, you are allowed to swap any two adjacent elements of the array.
Find the minimum number of operations required so that the first F elements
of the array sum to at least T .

2 Subtask 1: N ≤ 2, ai ≤ 100, T ≤ 109

Here, N can only take two values: either 1 or 2.

• Case N = 1: We cannot apply any operation and as 1 ≤ F ≤ N we know
that F = 1. Thus it is enough to check whether or not a1 ≥ T

• Case N = 2: We can either swap the two numbers, or not swap them.
We can just consider the two cases and see if one of them gives a correct
solution.

Overall complexity: O(1)

Expected score: 6.

3 Subtask 2: ai ≤ 1

In this subtask, ai is either 0 or 1 for all i. First we will try to find if we can
reach the objective without minimising the number of swaps. Let’s say there
are X ones in the array. The largest possible sum would be achieved by moving
all the ones at the beginning of the array. The sum of the first F elements of
the array will then be s = min(F,X). If s < T , the answer is NO. Else, we can
construct an answer by reaching a state where there are at least T ones at the
beginning of the array. It is optimal to chose ones in increasing order of their
indices in the array.

Expected score: 19 for just subtask 2, 6 + 19 = 25 for subtasks 1 and 2.

1

4 Subtask 3: N ≤ 20

In this subtask, N ≤ 20 which suggests some sort of backtracking/bitmask
solution.

We can split the array in two parts:

• the left part (first F elements)

• the right part (everything except the first F elements)

Fixing the set of the elements that will end in the left part will be enough. Let’s
say that their indexes (in the original state of the array) are:

l0 < l1 < . . . < lF−1

The minimum required number of swaps to move them to the left part is:

(l0 − 0) + (l1 − 1) + . . . (lF−1 − (F − 1))

Indeed, it is never useful to swap li and lj when i < j. Furthermore, as l0 has
to end up in the first position, it needs to be swapped with all the elements to
its left, same argument for l1 which need to be swapped with all the elements
with indexes in [1 . . l1[etc. Thus, all these swaps are necessary. This amount
of swaps is sufficient (applying them is enough to move l0, l1, . . . , lF−1 to the
left part.

One way of implementing this would be by iterating over bitmasks to iterate
through all the subsets of [0 . . (N − 1)]
Overall complexity: O(2N ·N).

Expected score: 6 + 16 = 22 (it solves subtasks 1 and 3).

5 Subtask 4: ai ≤ 100

The constraints of the problem suggest that we use DP. Also, the solution of
subtask 3 presents clearly a process of “chosing/not chosing” elements which is
definitely something that could be solved with DP.

The states are:

• The index of the integer we are currently considering

• How many elements we already selected to be in the left part

• The sum of the elements currently in the left part

So dp[i][j][s] will give the minimum number of swaps required to select the first
j integers of the left part while having only used the first i integers and such
that their sum is exactly s.

The transitions are pretty simple:

• Either we choose the ith integer to be in the left part

2

• Or we don’t choose it to be in the left part

We use the formula of subtask 3 to update the number of swaps while doing our
transitions.

Overall complexity: O(N2 · max(ai)
0≤i≤N−1

)

Expected score: 6 + 19 + 30 = 55.

6 Full Task

Let’s try to optimise the DP solution we got for the previous subtask. The
thing that makes it slow is that the sum of the integers of the left part can be
extremely high. On the other hand, the value that our DP computes is small.
Indeed, by the formula we found in subtask 3, the number of swaps required to
move all the selected integers to the left part is bounded by N2. Thus we can
change a bit our states:

• The index of the integer we are currently considering

• How many elements we already selected to be in the left part

• The minimum number of swaps required to move the selected elements to
the first part

Given such a state, we would like to maximise the sum of the integers selected
to be in the left part. Thus, dp[i][j][s] will give the maximal sum we can reach
by selecting the first j integers of the left part while having only used the first
i integers and such that the minimum number of swaps required to move them
to the left part is exactly s.

Overall complexity: O(N4)

Expected score: 100

3

	The Problem
	Subtask 1: N 2,ai 100, T 109
	Subtask 2: ai 1
	Subtask 3: N 20
	Subtask 4: ai 100
	Full Task

