
Bikes vs Cars

EGOI 2023

Problem author: Nils Gustafsson.

Solution:

We can start by writing down what the numbers Ci,j and Bi,j mean in a more
concise way:

Ci,j = max
p

(min
b

(W − b))

Bi,j = max
p

(min
b

(b))

Here, the max is taken over all paths from i to j, and the min is over all bike
lane widths of edges on the path.

Note that if we let Ai,j = W−Ci,j , then we get rid of the parameter W , because

Ai,j = min
p

(max
b

(b))

So now we only focus on the bike lane width, and our goal is to construct a graph
that satisfies all the minmax- and maxmin-constraints imposed by the numbers
Ai,j and Bi,j .

Subtask 1 and 2:

Here it is helpful to make the following observation:

Observation 1: The minimum edge weight in the graph is min(Ai,j), and the
maximum edge weight is max(Bi,j).

In this subtask, this implies that if Bi,j < Ai,j , then it is impossible.

Otherwise, we can add edges of weight Ai,j and Bi,j that connect all pairs of
vertices.

1



Subtask 3 (N ≤ 40)

To solve the case when N is small, we need to find a construction that always
works, but uses too many edges.

Observation 2: If there is a valid solution, then the following construction will
also work: disregard all pairs of vertices where Ai,j > Bi,j . For all other pairs
of vertices, add edges of weight Ai,j and Bi,j .

Here is some motivation why this works:

First, if we have an edge between i and j of weight b, then Ai,j ≤ b and
Bi,j ≥ b, which means that Ai,j ≤ Bi,j . So we can never have an edge between
two vertices if Ai,j > Bi,j . This means that if a graph constructed as above is
disconnected, then there is no solution.

Second, a path in the construction that minimizes the maximum weight between
i and j will only use edges Ax,y that we added, since they are always smaller
than the Bx,y-edges. But it could happen that the minimum maximum weight
ends up smaller than Ai,j , if there is a path i, a1, a2, . . . , j such that

max(Ai,a1
, Aa1,a2

, . . . ) < Ai,j

However, if such a path existed, then it could also be used in any other con-
struction, so in this case the answer should be NO anyway.

Third, similar arguments can be made about the Bi,j-edges.

So all we have to do to get this subtask is to construct the graph above, and
check that it is a valid solution. This check can be done by running an algorithm
similar to Floyd-Warshall’s, or by using minimum spanning trees.

Subtask 5 (all Bi,j are the same)

Let B be the value of all Bi,j . Remember from subtask 1 that the maximum
weight in the graph is the maximum value of Bi,j , which is B. So in this subtask,
we must have that B ≥ max(Ai,j), otherwise there is no solution. But if this
is the case, then we can connect all vertices with edges of weight B and then
forget about the maxmin constraints.

After that, we only have to focus on the numbers Ai,j .

Observation 3: If we have a graph that satisfies all Ai,j-constraints, then the
minimum spanning tree of that graph will still satisfy all the Ai,j-constraints.

This fact is a rather standard trick when it comes to minimum spanning trees.
To see why it is true, assume that there exists a path from i to j such that the
maximum weight is smaller than the maximum weight of the path along the
minimum spanning tree. Then we could remove the largest weight edge on the

2



path along the tree, and replace it with an edge of smaller weight. This would
create a smaller spanning tree, which is a contradiction.

So, to solve the subtask, find a minimum spanning tree of the complete graph
whose edge weights are Ai,j , and check that it is a valid solution. There are
several algorithms to efficiently find a minimum spanning tree, like Prim’s or
Kruskal’s.

Full score

To get full score, we will put together the things we learned in the previous
subtasks.

First, take the construction from Subtask 3. Like we saw in Subtask 5, we can
take a minimum spanning tree of this graph, and it will still satisfy the minmax-
constraints. Similarly, we can take the maximum spanning tree to satisfy the
maxmin-constraints. Furthermore, if we take the union of these two trees, then
we get a solution, if one exists.

To see why this works, note that the minimum spanning tree will only use the
Ai,j-edges added in Subtask 3, and the maximum spanning tree will only use the
Bi,j-edges. Also, a path between i and j that minimizes the maximum weight
will only use the edges from the MST, like we saw in Subtask 5, and this value
is exactly Ai,j like we want (and similarly for Bi,j).

Summary of how to get 100 points: Create a graph with edges of weight Ai,j

and Bi,j between every pair of vertices such that Ai,j ≤ Bi,j , take the union of
the minimum and maximum spanning tree, and finally check that this is a valid
solution.

3


